
On-device Integrated Re-ranking with Heterogeneous Behavior
Modeling

Yunjia Xi
xiyunjia@sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

Weiwen Liu∗

liuweiwen8@huawei.com

Huawei Noah’s Ark Lab

Shenzhen, China

Yang Wang∗

ywang@sei.ecnu.edu.cn

East China Normal University

Shanghai, China

Ruiming Tang
tangruiming@huawei.com

Huawei Noah’s Ark Lab

Shenzhen, China

Weinan Zhang
wnzhang@sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

Yue Zhu
zhuyue9@huawei.com

Consumer Business Group, Huawei

Shenzhen, China

Rui Zhang
rayteam@yeah.net

ruizhang.info

Shenzhen, China

Yong Yu
yyu@apex.sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

ABSTRACT

As an emerging �eld driven by industrial applications, integrated

re-ranking combines lists from upstream sources into a single list,

and presents it to the user. The quality of integrated re-ranking is es-

pecially sensitive to real-time user behaviors and preferences. How-

ever, existing methods are all built on the cloud-to-edge framework,

where mixed lists are generated by the cloud model and then sent

to the devices. Despite its e�ectiveness, such a framework fails to

capture users’ real-time preferences due to the network bandwidth

and latency. Hence, we propose to place the integrated re-ranking

model on devices, allowing for the full exploitation of real-time

behaviors. To achieve this, we need to address two key issues: �rst,

how to extract users’ preferences for di�erent sources from hetero-

geneous and imbalanced user behaviors; second, how to explore

the correlation between the extracted personalized preferences and

the candidate items. In this work, we present the �rst on-Device

Integrated Re-ranking framework, DIR, to avoid delays in process-

ing real-time user behaviors. DIR includes amulti-sequence behavior

modeling module to extract the user’s source-level preferences, and

a preference-adaptive re-ranking module to incorporate personal-

ized source-level preferences into the re-ranking of candidate items.

Besides, we design exposure loss and utility loss to jointly opti-

mize exposure fairness and overall utility. Extensive experiments

on three datasets show that DIR signi�cantly outperforms the state-

of-the-art baselines in utility-based and fairness-based metrics.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599878

CCS CONCEPTS

• Information systems → Recommender systems.

KEYWORDS

Recommender System, Edge Computing, Integrated Re-ranking

ACM Reference Format:

Yunjia Xi, Weiwen Liu, Yang Wang, Ruiming Tang, Weinan Zhang, Yue

Zhu, Rui Zhang, and Yong Yu. 2023. On-device Integrated Re-ranking with

Heterogeneous Behavior Modeling. In Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD ’23), August

6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3580305.3599878

1 INTRODUCTION

Integrated re-ranking (also referred to as mixed re-ranking or multi-

source re-ranking) is a rapidly emerging �eld driven by industrial

applications. Di�erent from traditional re-ranking that reorders

lists from a single source, the integrated re-ranking system takes as

input multiple ranking lists from di�erent upstream sources (e.g.,

news, videos, photos, advertisements), and derives a mixed list of

items. Items belonging to di�erent sources usually lie in distinct

feature spaces (i.e., heterogeneous), and are subject to di�erent

ranking models. The basic objective of integrated re-ranking is to

optimize the overall listwise utility (e.g., the number of clicks), but

there may also be other objectives, such as fairness. As the last

stage of recommendation, the quality of the integrated re-ranking

is especially sensitive to real-time user behaviors, which contain

rich information about users’ preferences and interests.

Existing integrated re-ranking work, however, might fall short

of capturing such users’ real-time preferences. They are all built

on the cloud-to-edge framework [12, 22, 37, 40], where integrated

re-ranking models serving on the cloud generate the mixed lists

and then send the lists to the edge (i.e., the mobile devices). This

architecture allows for the full utilization of cloud-side capabilities,

whereas it fails to capture users’ timely interest changes due to the

network bandwidth and latency [14]. A short delay in time may

5225

https://doi.org/10.1145/3580305.3599878
https://doi.org/10.1145/3580305.3599878
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599878&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yunjia Xi et al.

Cloud
Servers

Pictures

Articles

Videos

Integrated
Re-ranking Model

Re-ranked List Mobile
Device

Candidates
& Model

User History
Timeline

Cloud History

Device History

...

Figure 1: Integrated Re-ranking on the Edge.

cause great performance degradation for integrated re-ranking. For

example, as displayed in the upper right of Figure 1, the historical

behaviors on the cloud reveal that the user likes videos and articles.

In contrast, the device, which has access to the latest user behav-

iors, can detect the user has recently clicked on pictures, possibly

implying that the user has developed new interests in pictures.

With the sustained expansion of computational power and stor-

age capacity on mobile devices, edge computing makes it possi-

ble to perform deep network inference or even training on edge

devices. This leads to the emergence of on-device recommenda-

tion [7, 13, 14, 41, 42], where the model deployed on the device can

access the full user behaviors, allowing it to track real-time changes

in user interests and respond to users immediately. Therefore, we

propose to put the integrated re-ranking model on the device for the

full exploitation of real-time behaviors. The work�ow is shown in

Figure 1. The cloud server delivers the integrated re-ranking model

and candidate items to the edge devices. The model on the device

then performs the integrated re-ranking with the aid of real-time

behaviors and displays the re-ranked list to the user. Although edge

computing is appealing, it is non-trivial to deploy the integrated

ranking on the device with the following two main challenges.

First of all, it is challenging to extract users’ preferences for dif-

ferent sources from heterogeneous and imbalanced user behaviors.

Users’ preferences for di�erent sources are generally two-fold: the

high-level preferences toward di�erent sources and the �ne-grained

preferences within each individual source [15]. For example, a user

may prefer videos to articles. In the meantime, she may favor food

in the video source while preferring social news in the article source.

We refer to the two-fold preferences as source-level preferences.

However, previous studies directly transform the heterogeneous

behaviors into a single preference vector [22, 37, 40], which is in-

complete and largely overlooks the �ne-grained user preferences

within each source. More importantly, previous work had not ad-

dressed the issue of imbalanced user behaviors. Users may have

abundant behaviors in some sources (i.e., warm source) while hav-

ing very sparse behaviors in others (i.e., cold source), making it

especially di�cult to learn users’ actual preferences for the sparse

sources. In fact, the absence of cold source items in the user history

does not necessarily means that the user is uninterested in the

source. It is probably because the user has not been recommended

items from the cold source recently. Therefore, it is bene�cial to

exploit the correlation between di�erent sources, which can help

infer users’ preferences for cold sources from warm sources.

The second challenge is how to e�ectively explore the correlation

between the extracted personalized preferences and the candidate

items for integrated re-ranking. For one thing, the candidate items

come from di�erent sources, and the user’s preferences for each

source contribute di�erently to the candidate items. For instance,

users’ preferences for the video source are more in�uential for

video candidates, but are less useful for article candidates. Hence,

it is essential for integrated re-ranking to conduct source-level

alignment to align source-level preferences with the correspond-

ing candidate items. Existing work [12, 22, 37], however, simply

concatenates the candidate itemwith a vector that has mixed prefer-

ences from multiple sources, which may introduce distractions and

thereby yield sub-optimal performances. For another, as the model

is placed closer to the user in edge computing, the expectation

for personalization on the device is much higher than that for the

cloud. Yet the common practice in the industry, on-device inference

framework, is to �rst train the model on the cloud and then send it

to the edge devices for inference [13, 14]. Although the resource

consumption for the device is reduced, it uses the same set of model

parameters to serve di�erent users, which limits the potential to

provide tailored models for each user. As users’ preferences contain

rich personalized information, we propose to inject the preferences

into the model parameters for candidate items in order to provide

a customized model and real-time personalization for each user

within the on-device inference framework.

Another important issue in integrated re-ranking is managing

the balance between the total utility of the platform and the expo-

sure fairness amongst di�erent sources. Generally, the primary goal

of a recommendation system is to maximize the overall utility (e.g.,

click-through rates, conversion rates, revenue) and to provide the

user with a satisfactory experience. Yet, the system is accountable

not only to the user, but also to the item sources in the integrated

re-ranking. Each source is expected to receive fair exposure. The

exposure determines the economic opportunities (revenue) for each

item source, and the unfair distribution of exposure can harm under-

exposed sources and ultimately impair the long-term utility of the

platform. In this work, we aim to boost the overall utility of the

integrated re-ranking while considering exposure fairness.

To address the aforementioned issues, we propose an on-Device

Integrated Re-ranking (DIR) framework, which achieves real-

time heterogeneous behavior modeling and preference-adaptive inte-

grated re-ranking without additional requests to the cloud servers.

To begin with, we handle user heterogeneous behaviors as mul-

tiple sequences and propose a multi-sequence behavior modeling

module to extract the user’s source-level preferences. We �rst in-

troduce intra-source interaction to acquire the user’s preference

for each source and then use representation sharing to infer the

cold source preferences from the warm ones. Afterward, to learn

the personalized correlation between source-level preferences and

candidate items, we present the preference-adaptive re-ranking mod-

ule, which includes a source-level fusion for source-level alignment

and a preference-adaptive generator that converts the user’s prefer-

ences into personalized parameters. We also design utility loss and

exposure loss to jointly optimize the overall utility and exposure

fairness. Our main contributions can be summarized as follows:

5226

On-device Integrated Re-ranking with Heterogeneous Behavior Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

• We present the on-device integrated re-ranking framework

DIR to overcome the intrinsic limitations of conventional

cloud-based solutions—delays in processing real-time user

behaviors and system feedback. To the best of our knowledge,

this is the �rst deep integrated re-ranking model on devices.

• We model the heterogeneous and imbalanced history as mul-

tiple sequences and propose a multi-sequence behavior mod-

eling module to extract users’ source-level preferences and

address the problem of cold sources.

• We address the drawback of on-device inference frameworks,

the lack of personalization caused by the same model trained

on the cloud, with personalized parameters. For this, we

introduce preference-adaptive re-ranking that injects users’

source-level preferences into personalized parameters to re-

rank candidate items from di�erent sources.

Additionally, we design a utility and exposure loss function to

balance the tradeo� between utility and exposure fairness. Exten-

sive experiments conducted on two benchmark datasets and an

industrial dataset demonstrate the e�ectiveness of device-based

models and that our proposed DIR outperforms the state-of-the-art

algorithms in both utility-based and fairness-based metrics.

2 RELATEDWORK

2.1 On-Device Recommendation

With the growth of computing power on edge devices, the on-

device recommendation has been drawing increasing attention.

We can classify it into on-device inference and on-device learning,

according to whether the device undertakes the training task [32].

2.1.1 On-device inference. On-device inference trains the model

on the cloud and performs the inference on the devices. This ap-

proach takes advantage of the real-time feedback on the device

while avoiding too much resource consumption. Owing to the lim-

ited storage resource of devices, the models deployed on the devices

are usually lightweight models or structures with special designs

for the big embedding table. For instance, EdgeRec [14] splits the

model into two parts, leaving the embedding on the cloud and the

upper model on the device. SVR [13] designs a tiny model, which

discards the big embedding table and chooses the most important

features. Other approaches focus on model compression, especially

embedding compression, such as TT-Rec [43] using tensor-train

decomposition and RELU [6] utilizing a set of embedding blocks

to design elastic embedding. There are also some methods that ex-

plore the incorporation of embedding compression and knowledge

distillation, such as SKD [38], EODRec [39], and LLRec [35].

2.1.2 On-device learning. On-device learning involves training on

edge devices in exchange for better personalization. An important

example is Federated Learning [20], which keeps the individual

data on devices and only communicates gradients or parameters

via the cloud. There are plenty of works in Federated Learning, but

they mainly focus on privacy protection, which is orthogonal to

the topic of this work. Other studies are insensitive to privacy and

concentrate on improving the e�ciency of on-device learning with

device-cloud collaboration [7, 26, 41, 42]. For example, Colla [26]

allows the cloud and devices to learn collectively by preserving a

tailored model for each device and aggregating the device-learned

knowledge on the cloud. MPDA [41] conducts device-cloud collab-

oration under domain adaption, which retrieves similar data from

the large-scale cloud’s global pool to augment the user’s local data.

On-device learning enables users to customize their own model,

but it has a large among of time and resource consumption. In

addition, it is more demanding for user devices and may merely

cover limited users (i.e., high-quality edge TPU/CPU). Hence the

main solutions implemented in industrial recommender systems

adopt on-device inference [13, 14]. In this work, we also embrace the

on-device inference framework, whilst overcoming its drawback of

insu�cient personalization by integrating personalized parameters.

2.2 Re-ranking

Re-ranking stage re-arranges the initial lists from the previous

ranking stage and presents the re�ned lists to the users [25]. We

group the re-ranking into single-source re-ranking andmulti-source

re-ranking depending on the number of the input initial lists.

2.2.1 Single-source re-ranking. Single-source re-ranking is a rel-

atively well-studied area of re-ranking. It inputs a single list of

homogeneous items, emphasizing the cross-item in�uence within

the list. Various network structures, such as RNN [2, 4], Trans-

former [21, 29, 30, 36], and GNN [24], have been explored for mod-

eling the cross-item in�uence. For example, DLCM [2] employs GRU

to encode the top-ranked list into item representations. PRM [30]

and SetRank [29] adopt self-attention to model the mutual in�u-

ences between any pair of items. MIR [36] introduces multi-level

interaction between the user behavior list and the candidate item set.

IRGPR [24] exploits graph neural networks to aggregate informa-

tion from neighborhoods and explicitly model item relationships.

Most single-source re-ranking methods cannot be applied di-

rectly to integrated re-ranking. This is because most of them require

input lists with a good initial ranking order, whereas the input to

integrated re-ranking is unsorted between multiple sources. A few

methods insensitive to initial orderings, such as SetRank [29] and

MIR [36], could be adapted in integrated re-ranking, but the lack of

source-level information may lead to underperformance.

2.2.2 Multi-source re-ranking. Multi-source re-ranking, a.k.a. the

integrated re-ranking, is an emerging �eld in recent years. Cur-

rently, the dominant approach in this �eld is the Reinforcement

Learning (RL) method, and their settings are not entirely consistent.

Some work in ad allocation requires the mixing of ads and or-

ganic items in feed under the order-preservation constraint [22, 37],

which means only the sources need to be arranged. For instance,

Cross-DQN [22] crosses the embeddings of items and models the

crossed sequence by multichannel attention, to extract the arrange-

ment signal. Other studies aim to integrate re-rank lists from more

sources without order-preservation constraint [12, 40]. For example,

HRL [40] is a hierarchical RL method, with a low-level agent as the

channel selector and a high-level agent as the item recommender.

Besides, rank aggregation also aims to consolidate multiple rank-

ings into a single ranking [3], sometimes with constraints like di-

versity and fairness [31]. This line of work di�ers from the setting

of our integrated re-ranking in terms of its input. For rank aggre-

gation, its input is di�erent rankings generated by multiple base

rankers applied to the same candidate set. In other words, each item

5227

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yunjia Xi et al.

in the candidate set receives scores given by di�erent base rankers.

This is in contrast to integrated re-ranking that involves multiple

base rankers producing rankings for heterogeneous candidate sets

from diverse sources. For instance, video candidates are ranked by

one ranker while articles are ranked by another. Its objective is to

blend items from the two types of candidate sets. Though sharing

some similarities, these two problems are orthogonal to each other.

These approaches do not adequately explore the critical role of

source-level preferences embodied in user history for integrated

re-ranking. Furthermore, these RL-based methods have a high time

complexity in inference and cannot meet the requirement of real-

time inference on the device, so they are unsuitable for on-device

integrated re-ranking. Di�erent from the above work, our focus

is to design a model that can �t on mobile devices and exploit

source-level preferences for integrated re-ranking.

3 PROBLEM FORMULATION

In this section, we formalize the de�nition of the on-device inte-

grated re-ranking task. In integrated re-ranking, the model takes as

input the initial ranking lists of di�erent sources generated by dif-

ferent rankers, and outputs a recommendation list with items from

di�erent sources intermixed. However, existing work has placed the

integrated re-ranking model on the cloud, which may not acquire

user behavior in real time due to network bandwidth and latency.

On-device integrated re-ranking, furthermore, deploys the well-

trained model on the device and mixes the candidate items from

the cloud based on the user’s real-time behaviorse on the device.

Formally, for a user D, the cloud server delivers< candidate lists

(1, (2, . . . , (ģ from di�erent sources to the device side, where (ğ ,

8 = 1, . . . ,<, denotes the candidate list of the 8-th source and< is

the number of sources. The device side receives the candidate list

set and collects the user’s real-time behavior history�1, �2, . . . , �ģ
where �ğ , 8 = 1, . . . ,<, denotes the history item list recently clicked

by user D in the 8-th source. The problem of on-device integrated

re-ranking refers to the device side employing the real-time user

history to mix the< candidate lists (1, (2, . . . , (ģ and generate a

single integrated list ' of items.

The basic objective of integrated re-ranking is to optimize the

overall utility by considering the user’s real-time preferences and

listwise context. Here, the utility is de�ned by the expected sum (or

weighted sum) of the click1 probability for each item in the mixed

list ', e.g., the total number of clicks or the total revenue. Addition-

ally, in most cases for industrial applications, there is a requirement

for exposure fairness in the integrated re-ranking [22, 37]. Let

w = [F1,F2, . . . ,Fģ] ∈ Rģ be the given target exposure distribu-

tion of< sources, whereFğ g 0, 8 = 1, . . . ,<, denotes the desired

exposure ratio for the 8-th source and
∑ģ
ğ=1Fğ = 1. We expect the

number of exposure for each source in the �nal recommended list

to be proportional to the target exposure distribution w. With this

setting, integrated re-ranking is required to generate a mixed list '

that balances the overall utility and exposure fairness.

4 THE PROPOSED FRAMEWORK

In this section, we present the details of our proposed DIR. As illus-

trated in Figure 2, we introduce three components: heterogeneous

1The click could be replaced by other utility metrics like conversions, purchases, etc.

encoding module, multi-sequence behavior modeling module, and

preference-adaptive re-ranking module, accordingly.

To begin with, the heterogeneous encoding module transforms

heterogeneous items from di�erent sources to the same feature

space. Next, the multi-sequence behavior modeling module extracts

users’ source-level preferences from their historical behaviors in

various sources. It �rst applies intra-source interaction to acquire

users’ preferences for di�erent sources separately, and then trans-

fers the preferences from warm sources to cold sources through

linear and high-order representation sharing. Lastly, the preference-

adaptive re-ranking module will fuse the extracted source-level

preferences into the reranking of candidate items. It begins with a

listwise context modeling of self-attention, and subsequently, the

source-level fusion combines the candidate items and the user’s

preferences for the corresponding source. In addition, a preference-

adaptive generator will produce a set of personalized parameters

for the �nal MLP, enhancing the personalization of the model.

4.1 Heterogeneous Encoding Module

The inputs to DIR are the< candidate lists (1, . . . , (ģ from di�erent

sources and< real-time user behavior lists�1, �2, . . . , �ģ of userD.

As the features of items from various sources may be heterogeneous

and lie in distinctive feature spaces (e.g., videos and articles), we

apply di�erent encoding layers to transform these heterogeneous

item features into the same feature space. The implementation of

the encoder layer is �exible and can be varied depending on the

feature types of di�erent sources. For example, suppose the features

of< sources are all categorical. In that case, we could maintain<

separate embedding layers to obtain the low-dimensional dense

embedding vectors and< MLPs to map the embedding vectors to

the same feature space. After the encoding, we derive the represen-

tation for each item in candidate lists (1, . . . , (ģ and user behavior

history �1, . . . , �ģ . Speci�cally, let xğ, Ġ ∈ RĚĮ and hğ, Ġ ∈ RĚℎ be

the representation of the 9-th item in the candidate list (ğ of the

8-th source and the representation of the 9-th item in the user his-

tory �ğ of the 8-th source, respectively. Here, 3Į and 3ℎ denote the

dimension of representation for candidate items and history items.

Then, we obtain the candidate representation matrix X ∈ RģĤ×ĚĮ
and history representation matrices for< source H1, . . . ,Hģ with

the dimension of Hğ , 8 = 1, . . . ,<, being C × 3ℎ . Here,<, =, and C

are the number of sources, the maximum number of items in each

candidate list for each source, and the maximum length of user

history for each source, respectively.

4.2 Multi-sequence Behavior Modeling

Users’ history behaviors contain rich information for inferring their

personal preferences and tastes [21, 36]. The intention of on-device

integrated re-ranking is also to leverage real-time user behaviors to

deduce users’ current interests more accurately. Thus, how tomodel

user behaviors in real time becomes a critical issue. In integrated re-

ranking, users’ historical behaviors from various sources naturally

constitute a multi-sequence history. Yet previous studies usually

re-assemble the multi-sequence history into a single sequence.

Applying one single sequence for behavior modeling may suf-

fer from the following two defects. First, the user has source-level

preferences, where the user not only has preferences for di�erent

5228

On-device Integrated Re-ranking with Heterogeneous Behavior Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

History for source

...

History for source Candidates for source Candidates for source

... Multi-head Self-attention

Heterogeneous Encoding Module

Multi-head Self-attention

...

Mulit-sequence Behavior Modeling Module

...Intra-source
Interaction ...

High-order
Sharing

...Source-level
Preferences Preference-

adaptive
Generator MLP

Output Scores

Preference-adaptive Re-ranking Module

Source-level
Fusion

......

...
Candidate

Input

Linear
Sharing

Listwise Context
Modeling

History
Input

Personalized
MLP

Figure 2: The overall framework of DIR.

sources, but also has �ne-grained preferences within sources that

may be interrelated or mutually exclusive. The single sequence

may overlook or confound these �ne-grained preferences. Second,

historical behaviors from various sources are often imbalanced.

Cold sources may have extremely sparse behaviors, and are over-

whelmed by other warm sources. Prior work usually ignores this

issue and fails to uncover users’ preferences for cold sources. In this

work, we adopt a more spontaneous approach,multi-sequence

behavior modeling, with intra-source interaction to extract users’

�ne-grained preferences for each source and representation sharing

to mitigate the problem of the imbalanced history.

4.2.1 Intra-source Interaction. This part is designed to capture

users’ �ne-grained preferences within each source. Its input is

the user’s history lists in various sources, which carry the temporal

pattern of the user’s interests and preferences. To better leverage

the temporal pattern, we employ GRU [8], a commonly used light-

weight network for sequence data. User behavior can vary with

sources, so we use separate GRUs for di�erent sources for modeling

users’ evolving interests, and we have < Ĥğ , pğ >= GRUğ (Hğ), 8 =
1, . . . ,<, where Hğ = {hğ,1, . . . , hğ,Ī } denotes the representation of

items in user history from the 8-th source, Ĥğ = {ĥğ,1, . . . , ĥğ,Ī } de-
notes the output sequence of GRU encoding, and pğ ∈ RĚĦ of size3Ħ
is the output �nal state of GRU. Here, we consider pi, 8 = 1, . . . ,<, as

the user’s �ne-grained preferences for the 8-th sources since the �-

nal state contains the information of the whole sequence. Note that

GRU could be replaced by other networks for sequential data, such

as LSTM [16] and self-attention with positional embedding [34].

4.2.2 Representation Sharing. Handling user history as multiple

sequences makes it straightforward to obtain �ne-grained prefer-

ences of users for individual sources, but does not intuitively solve

the problem of imbalanced history. In particular, if the user has no

history in a speci�c source, the corresponding preference represen-

tation obtained in intra-source interaction would be empty, which

prevents us from extracting information about the source. To this

end, we propose the representation sharing module that allows

preference representations to be shared by means of linear and

higher-order interactions. In this way, user behavioral information

in the warm sources can then be transferred to the cold sources for

extrapolating the user’s preferences in the cold sources.

First, we conduct representation sharing through linear combina-

tion motivated by Cross-Stitch [27], which can automatically learn

an optimal combination of shared and task-speci�c representations.

Speci�cally, this linear combination is computed as follows

V =



v1
...

vģ


=



U1,1 . . . U1,ģ
...

. . .
...

Uģ,1 . . . Uģ,ģ





p1
...

pģ


, (1)

where pğ ∈ RĚĦ and vğ ∈ RĚĦ , 8 = 1, . . . ,<, are the preference repre-

sentations obtained in intra-source interaction and after the linear

sharing. The sharing coe�cient Uğ, Ġ ∈ R, 8 = 1, . . . ,<, 9 = 1, . . . ,<,

indicates the extent to which pğ contributes to vĠ . In this way, each

preference is expressed as a combination of other preferences, subse-

quently ensuring that they interact with each other and preferences

in the cold sources are not empty.

However, the linear sharing described above is low-dimensional

and might be insu�cient to extract interactions between prefer-

ences, so we introduce self-attention to achieve high-order repre-

sentation interaction [33]. First, we concatenate the preferences

before and after linear sharing to get the input of high-order shar-

ing, that is v̂ğ = [pğ ·vğ], 8 = 1, . . . ,<, where · is the concatenation

operation. Then, we stack all the v̂ğ ∈ R2ĚĦ , 8 = 1, . . . ,<, and obtain

a matrix V̂ ∈ Rģ×2ĚĦ as the input of self-attention, so we get

R = Attention(V̂) = softmax

(
(V̂Wč) (V̂Wć)¦√

3ė

)
(V̂WĒ) , (2)

where Wč ∈ R2ĚĦ×Ěė , Wć ∈ R2ĚĦ×Ěė , and WĒ ∈ R2ĚĦ×Ěė de-

notes the parameter matrices of projection. The output R ∈ Rģ×Ěė

is the attended matrix and
√
3ė is used to stabilize gradients dur-

ing training. In terms of implementation, we apply the multi-head

mechanism to increase the stability of the self-attention network.

Finally, We get the user’s source-level preferences rğ ∈ RĚė in the

8-th source, that is the 8-th row of attended matrix R. It is worth

noting that both low-level and high-level representation sharing

are essential to ensure that cold sources can gain useful information

about the user’s preferences from warm sources. Supposing only

the self-attention mechanism is used and yet some sources have

5229

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yunjia Xi et al.

no historical behavior at all, the extracted preferences will still be

empty, and representation sharing cannot be accomplished.

4.3 Preference-adaptive Re-ranking

Having extracted the user’s source-level preferences from the real-

time behaviors, we now need to blend the multiple candidate lists

of di�erent sources into one mixed re-ranked list, while considering

the personalized source-level preferences. The user’s feedback on

an item in the mixed list depends not only on the current item but

also on the other items in the list. As such, the listwise context of

the whole list should also be factored in. In addition, the expectation

for personalization at the edge devices is a lot higher than that for

the cloud. Previous on-device inference methods [13, 14] fail to

achieve good personalization, since they use the same set of model

parameters for di�erent users. Given that the user’s preferences

contain rich personalized information in real time, we inject it

into the model parameters for candidate items in order to provide a

customized model that adapts to real-time and instant user interests.

Thus, we introduce a preference-adaptive re-ranking module, with

self-attention for the listwise context and a preference-adaptive

generator to generate personalized parameters.

To begin with, we draw on techniques for listwise context mod-

eling from conventional re-ranking [29, 30]. We adopt the self-

attention mechanism, which can model mutual in�uences between

any two items directly and is proved to be permutation-equivalent [29].

Taking the candidate representation matrix X ∈ RģĤ×ĚĮ obtained

in the encoding module, we can obtain the attended matrix X̂ =

Attention(X) through the similar process in Eq. (2). Then, we re-

shape the attended matrix X̂ ∈ RģĤ×Ěė into X̂ ∈ Rģ×Ĥ×Ěė and

unstack the matrix to obtain x̂ğ, Ġ , 8 = 1, . . . ,<, 9 = 1, . . . , =, the

interacted representation of the 9-th item in the 8-th source.

Aside from the interactions within the candidate set, it is also

necessary to align the candidate item with the user’s preferences

to avoid confusion of the preferences among di�erent sources. Ac-

cordingly, we devise source-level alignment to unite each item x̂ğ, Ġ
and the user’s preference rğ for the associated source 8

oğ, Ġ = [x̂ğ, Ġ · rğ · (x̂ğ, Ġ » rğ)] , (3)

where · and » denote the concatenation and element-wise product

operation. The element-wise product introduces the second-order

interaction between items and preferences.

Lastly, multi-layer perception (MLP) is integrated into the output

layer. We feed each item embedding oğ, Ġ into a sharedMLP to obtain

the �nal re-ranking score

~̂ğ, Ġ = MLP(oğ, Ġ) , (4)

where ~̂ğ, Ġ ∈ R is the score for the 9-th item in the 8-th source.

So far, we have not covered the personalization of the model

parameters. Motivated by [9], we utilize a preference-adaptive gen-

erator 6(R) to generate a set of personalized parameters with pref-

erences embodied in historical behaviors. Here, R = {rğ , . . . , rģ} is
the user’s source-level preferences for< sources that we obtained

in Section 4.2. The design of the preference-adaptive generator is

�exible. Here we adopt a straightforward way of concatenating

and feeding the preferences for< sources into an MLP to produce

customized model parameters, i.e.,

6(R) = MLP([r1 · r2 · · · · · rģ]) . (5)

The dimension of 6(R) depends on the modules to which it applies.

Taking the fully connected (FC) layer as an example, its personalized

version is formulated as

ẑ = 6(R) » f (Wz + 1) , (6)

whereW and 1 denote the weight parameters, z and ẑ are the input

and output of the FC layer, and f (·) is the activation function. In this
case, 6(R) has the same dimension as ẑ and acts as gating weights

to mask the corresponding parameters, which is personalized and

adapts to the user’s preferences. Naturally, the personalized version

of MLP is formed by stacking the personalized FC layers, with each

layer applying part of the parameters in 6(R). In practice, however,

we only employ the personalized FC in the last layer of the MLP

in Eq.(4). The bene�ts of personalization via preference-adaptive

generator are notable. Unlike meta-learning methods, which manu-

ally split training data into support/query sets and probably require

multiple training rounds, the parameter generator follows an end-

to-end training procedure. Moreover, its computational overheads

are negligible. Only an additional element-wise multiplication is

involved, which is computationally e�cient.

4.4 Optimization

As mentioned in Section 3, there are two objectives in integrated re-

ranking. One is to guarantee the accuracy of the recommendation

and optimize the overall utility, and the other is exposure fairness

that the actual exposure in each source is expected to approximate

the desired exposure distribution. Consequently, we design utility

loss and exposure loss to achieve the two objectives.

Utility loss. For utility loss, we adopt the common cross-entropy

loss. Assuming that the label ~ğ, Ġ represents whether the 9-th can-

didate item from the 8-th source is clicked by user D, we can obtain

LīĪğĢ = − 1

|U|
∑

ī∈U

ģ∑

ğ

Ĥ∑

Ġ

~ğ, Ġ log ~̂ğ, Ġ + (1−~ğ, Ġ) log(1− ~̂ğ, Ġ) (7)

where ~̂ğ, Ġ is the predicted score for the 9-th candidate item from

the 8-th source for the user D, and U is the user set.

Exposure loss. As for exposure loss, we assume that the �rst

positions of the re-ranked list will be exposed. Therefore, we �rst

sort the items in the candidate lists by the prediction score ~̂ğ, Ġ ,

8 = 1, . . . ,<, 9 = 1, . . . , = and then calculate the distribution of

items from< sources at the top positions of all the re-ranked

lists, which is the actual accumulated exposure distribution for each

source. We denote it as wĦ = [FĦ1 , . . . ,F
Ħ
ģ], where FĦğ ∈ R∗, 8 =

1, . . . ,< represents the exposure ratio of the 8-th source. The actual

exposure distribution is expected to achieve the target exposure

distribution w = [F1, . . . ,Fģ] ∈ Rģ . Commonly used measures of

similarity between probability distributions are Kullback–Leibler

(KL) divergence [19] and Jensen–Shannon (JS) divergence [23].

Because JS divergence is symmetric and more appropriate than

the asymmetric KL divergence, we utilize JS divergence DĆ ď , as

presented in Eq.(8)

LĆ ď = DĆ ď (w| |wĦ) , (8)

5230

On-device Integrated Re-ranking with Heterogeneous Behavior Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

Combining Eq.(7) and Eq.(8), the loss for DIR is:

L = VLīĪğĢ + (1 − V)LĆ ď , (9)

where V denotes the hyper-parameter that controls the tradeo�

between the utility and the exposure loss. In the implementation, the

calculation of wĦ entails sorting the candidate lists, which is non-

di�erentiable. Thus, we use a simple reparameterization trick [17],

a common technique to pass derivatives when dealing with non-

di�erentiable operations, to approximate the sorting operation.

5 EXPERIMENT

This section �rst compares DIR with state-of-the-art baselines.

Then, we investigate the impact of several components and hyper-

parameters, followed by a case study to evaluate the performance

of DIR in addressing cold source and personalization issues.

5.1 Experimental Setup

5.1.1 Datasets. Our experiments are conducted on two public

datasets, Taobao Cloud Theme Click Dataset2 and Taobao Open

MCC Dataset3, and a proprietary dataset, Celia Suggestions.

• Taobao Open MCC Dataset [42] (MCC for short) is col-

lected from Mobile Taobao App, containing 13,081,990 click

records of randomly sampled 7,995,248 users. Each record

includes not only the features of the current item, but also

the user’s real-time click behaviors. The items in this dataset

can be classi�ed into three categories, so we use the category

as the source following [12].

• Taobao Cloud Theme Click Dataset [10] (CTC for short)

records the click data of Cloud Theme, an important recom-

mendation procedure in Taobao App. The dataset includes

1,423,835 click records under di�erent themes during a 6-day

promotion season, users’ purchase history in one month

before the promotion, and the embedding of 720,210 users

and 1,361,672 items. Here, we select three most frequently

interacted themes as sources.

• Celia Suggestions Dataset contains 50 million ranking lists

along with associated real-time APP/Service click history

during two days from Celia Suggestions of Huawei. The

candidates come from two di�erent sources, installed Apps

(e.g., TikTok, Instagram) and Services (atomic function, e.g.,

News browsing service, QR code scanning service). Di�erent

sources have distinctive display formats and sizes.

More description about history and candidate generation as well

as reproducibility can be found in Appendix A.

5.1.2 Baselines. Since there is no previous work in the �eld of on-

device integrated re-ranking, we compare DIR with the state-of-the-

art models in single-source re-ranking and integrated re-ranking

based on the cloud, as well as on-device re-ranking or recommenda-

tion. We employ three single-source re-ranking baselines. DIN [44]

is a click-through rate prediction model that captures users’ in-

terests to target items from historical behaviors. SetRank [29]

re-orders items by learning their permutation-equivariant represen-

tations via self-attention. MIR [36] re-ranks items with multi-level

2https://tianchi.aliyun.com/dataset/9716
3https://tianchi.aliyun.com/dataset/109858

interaction between user history list and candidate item set. In inte-

grated re-ranking, we adopt HRL [40], which proposes a hierarchi-

cal RL framework to recommend channels and items sequentially.

As for on-device recommendation, we use EdgeRec [14] which

makes the �rst attempt to implement the recommender system on

the device and SVR [13] that deploys an on-device context-aware

ranking model for short video recommendations.

Except for the on-device recommendation models that have al-

ready been put on the device (EdgeRec and SVR) and SetRank where

no history behavior is utilized, we implement both the device and

cloud version of the baselines for comparison. For example, DIN-D

and DIN-C denote DIN models that use device and cloud history

in our experiment, respectively.

5.1.3 Metrics. As the goal of the integrated re-ranking is to maxi-

mize the utility and balance the exposure fairness, we evaluate all

the models in terms of utility-based and fairness-based metrics.

• Utility-based metric: Following [13, 36, 40], several widely

used rankingmetrics,AUC [11],NDCG@K [18], andMAP@K,

are adopted. Moreover, we employ utility@K, the average

number of clicks on the top- recommended items, follow-

ing [37]. The metrics are computed with clicks in log data.

• Fairness-based metric: Following [28], we apply JS@K to

indicate how close the exposure distribution on sources is

to the ideal distribution. Formally, �(@ = DĆ ď (ĉć | |c),
where ĉć denotes the cumulative exposure distribution on

all the top- recommended items, c is the ideal distribution,

and DĆ ď is JS divergence. The lower value of �(@ means

the better performance of a model on exposure fairness.

On the three datasets, we assume that the top- items will be ex-

posed and set K to 5. As for the ideal distribution c in the fairness

metric, we set it roughly to the original proportion of the number

of items that each source owns to ensure a fair comparison. Speci�-

cally, c is set to (0.5, 0.4, 0.1), (0.33, 0.33, 0.34), and (0.2, 0.8) on the

MCC, CTC, and Celia Suggestions dataset, respectively.

5.2 Overall Performance

The overall performance of our proposed DIR and baselines on the

MCC, CTC, and Celia Suggestions datasets is reported in Table 1,

from which we have the following observations.

Firstly, our proposed DIR signi�cantly and consistently outper-

forms the state-of-the-art approaches on the three datasets. As

presented in Table 1, DIR obtains the best performance with respect

to utility-based metrics, AUC, NDCG, MAP, and utility, as well as

fairness-based metric JS. For instance, DIR achieves 4.53%, 9.03%,

7.01%, and 3.23 % improvement over baseline MIR-D in AUC, MAP,

NDCG, and utility on MCC dataset. On the CTC dataset, DIR also

surpasses the strongest baseline SVR by 4.48% in AUC, 5.27% in

MAP, 4.03% in NDCG, and 2.22% in utility on CTC dataset. This illus-

trates the huge potential of bringing edge computing to integrated

re-ranking and capturing users’ real-time interests via real-time

historical behaviors. We also attribute this improvement to DIR

successfully extracting the user’s source-level preference and per-

sonalizing it with candidate items from each source. With regard to

the fairness-based metric JS, DIR turns out to be even more e�ec-

tive, with improvements of 66.7%, 81.0%, and 58.8% gained on MCC,

CTC, Celia Suggestions dataset over the strongest baselines. This

5231

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yunjia Xi et al.

Table 1: Overall performance on three datasets.

Model
Taobao Open MCC (MCC) Taobao Cloud Theme Click (CTC) Celia Suggestions

AUC JS MAP NDCG utility AUC JS MAP NDCG utility AUC JS MAP NDCG utility

SetRank 0.6723 0.0028 0.3809 0.4659 0.7251 0.6112 0.0042 0.3525 0.4226 0.6367 0.8713 0.00062 0.8441 0.8203 2.2736

DIN-C 0.6943 0.0032 0.4141 0.5010 0.7657 0.5831 0.0073 0.3193 0.3890 0.6042 0.8574 0.00035 0.8431 0.8131 2.2418

DIN-D 0.7219 0.0021 0.4658 0.5502 0.8060 0.6300 0.0053 0.3734 0.4452 0.6641 0.8586 0.00038 0.8449 0.8150 2.2444

MIR-C 0.7134 0.0026 0.4291 0.5131 0.7685 0.5919 0.0038 0.3230 0.3917 0.6029 0.8837 0.00024 0.8611 0.8354 2.2952

MIR-D 0.7790 0.0027 0.5108 0.5955 0.8513 0.6135 0.0038 0.3501 0.4201 0.6341 0.8972 0.00026 0.8746 0.8515 2.3447

HRL-C 0.7232 0.0022 0.4798 0.5530 0.7744 0.6029 0.0023 0.3545 0.4207 0.6230 0.8646 0.00017 0.8520 0.8179 2.2557

HRL-D 0.7500 0.0025 0.5091 0.5834 0.8086 0.6334 0.0021 0.3704 0.4411 0.6562 0.8773 0.00017 0.8601 0.8303 2.2892

EdgeRec 0.7232 0.0050 0.4346 0.5227 0.7906 0.6195 0.0047 0.3554 0.4325 0.6680 0.8579 0.00018 0.8427 0.8140 2.2460

SVR 0.6907 0.0028 0.4075 0.4934 0.7551 0.6402 0.0033 0.3737 0.4564 0.7083 0.8558 0.00027 0.8424 0.8115 2.2360

DIR 0.8143* 0.0007 0.5569* 0.6372* 0.8788* 0.6689* 0.0004 0.3934* 0.4748* 0.7240* 0.9135* 0.00007 0.8911* 0.8723* 2.3925*

∗ denotes statistically signi�cant improvement (t-test with Ħ-value < 0.05) over the best baseline. Note that this is not available for JS metric computed in a cumulative way.

Table 2: Comparison of DIR and its variants on three datasets.

Variant
Taobao Open MCC (MCC) Taobao Cloud Theme Click (CTC) Celia Suggestions

AUC JS MAP NDCG utility AUC JS MAP NDCG utility AUC JS MAP NDCG utility

DIR-ISI 0.7690 0.0007 0.5126 0.5972 0.8526 0.6101 0.0005 0.3369 0.4096 0.6315 0.9060 0.00004 0.8850 0.8639 2.3705

DIR-LRS 0.7901 0.0006 0.5420 0.6230 0.8672 0.6201 0.0004 0.3467 0.4252 0.6654 0.9093 0.00005 0.8860 0.8671 2.3829

DIR-HRS 0.7700 0.0011 0.5197 0.6026 0.8532 0.6431 0.0003 0.3537 0.4316 0.6706 0.9095 0.00004 0.8866 0.8674 2.3825

DIR-LCM 0.7936 0.0009 0.5310 0.6125 0.8581 0.6226 0.0004 0.3676 0.4366 0.6471 0.8841 0.00009 0.8649 0.8469 2.3377

DIR-PG 0.7887 0.0006 0.5444 0.6249 0.8676 0.6488 0.0004 0.3660 0.4494 0.7044 0.9095 0.00003 0.8852 0.8666 2.3831

DIR-JS 0.8144 0.0024 0.5582 0.6393 0.8833 0.6699 0.0021 0.3859 0.4686 0.7227 0.9137 0.00019 0.8925 0.8727 2.3906

DIR 0.8143 0.0007 0.5569 0.6372 0.8788 0.6689 0.0004 0.3934 0.4748 0.7240 0.9135 0.00007 0.8911 0.8723 2.3925

demonstrates the e�ectiveness of exposure loss and shows that DIR

makes a better tradeo� between the overall utility and exposure

fairness, achieving better utility and fairness simultaneously.

Secondly, the utilization of real-time behaviors enhances the

performance of integrated re-ranking, and the more su�ciently

the history is modeled, the greater the enhancement. Even for the

same method, the version accessing to the device history with the

latest behaviors outperforms the version with the cloud history. For

example, DIN-D is superior to DIN-C, andMIR-D is superior to MIR-

C. This illustrates the critical role of real-time user behaviors for

integrated re-ranking and that it is reasonable to deploy integrated

re-ranking on edge devices. In addition, the better the modeling of

the history, the greater the boost is likely to be. For instance, MIR,

with multi-layer interactions between candidates and history, is

usually more e�ective than DIN with simple attention. DIR that

extracts source-level preferences from histories achieves even better

results than MIR that does not factor in the source information.

This also reveals the importance of the source-level preferences in

integrated re-ranking. Thus, EdgeRec and SVR, which only employ

single-source modeling, also do not perform very well.

Lastly, approaches designed for integrated re-ranking commonly

yield better results on the fairness-based metric. As depicted in

Table 1, integrated re-ranking methods HRL and DIR outperform

the other non-integrated re-ranking baselines regarding JS. These

integrated re-ranking methods usually consider source-level infor-

mation and are more likely to generate balanced recommendations.

Nevertheless, the source-level information is inadequate for the

model to achieve the target distribution, so we design exposure loss

for exposure fairness in DIR. The huge improvement of DIR over

baselines in JS also demonstrates the e�ectiveness of our design.

5.3 In-depth Analysis

To investigate the e�ectiveness of the components in DIR, we de-

sign several variants of DIR, which are listed as follows. DIR-ISI

replaces the GRU used in intra-source interaction with the average

pooling. DIR-LRS and DIR-HRS remove the linear and high-order

representation sharing from the multi-sequence behavior modeling

module.DIR-LCM andDIR-PG remove the listwise context model-

ing of candidate items and the preference-adaptive generator from

the preference-adaptive re-ranking module. DIR-JS removes the

exposure loss. The comparison of the above variants and original

DIR on three datasets is shown in Table 2, from which we have the

following observations.

Firstly, compared to the original DIR, the performance of all

variants declines to some extent, illustrating the e�ectiveness of

each component. DIR-ISI generally su�ers the greatest decline on

utility-based metrics, indicating that source-level preferences are

sensitive to the temporal order. DIR-JS performs poorly on the

fairness-based metric, but improves on the utility-based metrics,

suggesting that exposure loss can enhance exposure fairness and

that there is a tradeo� between fairness and utility. Furthermore,

the removals of di�erent components yield di�erent performances

on di�erent datasets, probably due to some inherent characteristics

of the datasets. As an example, on the Celia Suggestions dataset,

the DIR-LCM performs the worst, suggesting that the context of

the candidates is more critical for integrated re-ranking than the

user history. This is probably because user click behavior is more

in�uenced by listwise context than historical preferences in this

dataset, whereas the opposite is the case in the other two datasets.

In addition, more experiments about hyper-parameters and case

study can be found in Appendix B and C.

5232

On-device Integrated Re-ranking with Heterogeneous Behavior Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

sample construction

model training

model split

DIR Training

UI display

ranking

embedding lookup

Candidate Generation

matching

integrated re-
ranking

Cloud

Device

embedding
table

candidates embeddings model w/o
embedding table

real-time behaviors

feedback

Figure 3: The system implementation of DIR.

6 DEPLOYMENT FEASIBILITY

We adopt the on-device inference approach for implementing DIR,

following the practices of EdgeRec [14] and SVR [13], which have

been serving the main tra�c in Taobao and Kuaishou. As presented

in Figure 3, the cloud side is mainly responsible for two tasks: can-

didate generation and the training of DIR. The cloud constructs

training samples with the corresponding user features, item fea-

tures, and context features, and trains the integrated re-ranking

model. After training, the model is split into two parts. The learned

embedding table (which usually accounts for more than 95% of

the total parameters [5]) remains in the cloud, while the model

without embedding table is dispatched to the devices for inference.

As such, DIR can take up less storage space of the device without

losingmodel accuracy, as is usually the case with compressionmeth-

ods [6, 43]. Whenever a recommendation is triggered, the cloud

side will generate candidate items through two stages: matching

and ranking, and then transfer the embedding of the corresponding

candidate items found in the embedding table, together with the

user and context features, to the devices. Once the device receives

embedding and features, it will utilize the user’s real-time behaviors

and the previously received model to conduct integrated re-ranking,

and present the results to the user. As discussed in EdgeRec [14], the

split-deployment approach we use above canmeet the requirements

for resource consumption and system load on devices.

As for the e�ciency feasibility, we compare the time complexity

of DIR with EdgeRec and SVR, which are currently deployed in

Kuaishou and Taobao. Assuming that ℎ and = denote the number of

history items and candidate items from all sources, we can obtain

that the time complexity of DIR is $ (ℎ + =2). And the time com-

plexity of EdgeRec and SVR are$ (ℎ +ℎ=) and$ (:ℎ= +:=2), where
k is the parameter of beam search in SVR. Considering the number

of historical items is usually at the same scale as that of candidate

items, the time complexities of the three methods are similar.

Furthermore, we analyze the actual inference time of DIR, SVR,

and EdgeRec. Table 3 presents the average inference time of three

models which is calculated by dividing the inference time of the

entire testset by the total number of samples (lists). As illustrated in

Table 3, the inference time of DIR is between EdgeRec and SVR, in-

dicating that the inference speed of DIR is e�cient and comparable

to that of the methods serving online. The di�erence in inference

speed on the two datasets is probably due to the number of features.

Unlike the MCC dataset with only several categorical features, the

CTC dataset also includes an additional 128-dimensional dense

feature for each item, which may slow down the inference speed.

Table 3: The comparison of inference time (ms).

CTC MCC

SVR 3.0742 0.2790

EdgeRec 2.5469 0.1835

DIR 2.6786 0.2154

Additionally, We analyze the improvement in the system e�-

ciency of running the model on edge compared to the cloud from

the following two aspects. (i) Less system response time: Due to

the computing overhead of serving hundreds of millions of users,

the average response time for a cloud model is about 800ms. In

contrast, the model running on the user’s own device only needs

to process the user’s own requests, reducing the cost of centralized

computing and network communication overhead, thus achieving

a response time within 100ms. (ii) E�ciency in leveraging user

behaviors: Owing to the limitations of network bandwidth and

latency, cloud models usually have a delay of several minutes in

collecting user behaviors. Such delay will be even longer to reduce

the devices’ power consumption as the request of transmitting be-

havior data to the cloud requires large power consumption. While

on the edge side, the user’s historical behavior is directly queried

from the database on the device, which only requires a delay of mil-

liseconds. Moreover, the power consumption of making a request to

the edge is considerably lower than that of the cloud, which is only

1/20th of the power consumption of a single transmission with the

cloud. Thus, running the model on edge allows for collecting and

leveraging the user’s real-time behaviors at a much lower cost. To

sum up, on-device inference can more e�ciently utilize the user’s

real-time behaviors.

7 CONCLUSION

In this work, we address the intrinsic limitations of the cloud-based

integrated re-ranking – delayed processing of real-time user behav-

iors, and propose the �rst on-device integrated re-ranking frame-

work, DIR. We design a multi-sequence behavior modeling module

to extract users’ source-level preferences and introduce preference-

adaptive re-ranking to incorporate the source-level preference into

the re-ranking of candidates from di�erent sources. Both the multi-

sequence behavior modeling and the personalization for on-device

inference can be easily transferred to other domains involving mul-

tiple sequences and personalization. Extensive experiments show

that DIR signi�cantly outperforms state-of-the-art baselines. In

the future, we plan to explore better collaboration between edge

and cloud computing. For instance, we can investigate on-device

training strategies and adapt the model to various devices with

di�erent computational capacities and memory limitations.

ACKNOWLEDGEMENT

The team is supported by Shanghai Municipal Science and Technol-

ogy Major Project (2021SHZDZX0102), National Natural Science

Foundation of China (62177033), and Shanghai Arti�cial Intelli-

gence Innovation and Development Fund grant 2020-RGZN-02026.

The work is also sponsored by Huawei Innovation Research Pro-

gram. We thank MindSpore [1] for the partial support of this work.

5233

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yunjia Xi et al.

REFERENCES
[1] 2020. MindSpore. https://www.mindspore.cn/
[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a deep

listwise context model for ranking re�nement. In The 41st international ACM
SIGIR conference on research & development in information retrieval. 135–144.

[3] Javier Alcaraz, Mercedes Landete, and Juan F. Monge. 2022. Rank Aggregation:
Models and Algorithms. 153–178.

[4] Irwan Bello, Sayali Kulkarni, Sagar Jain, Craig Boutilier, Ed Chi, Elad Eban,
Xiyang Luo, Alan Mackey, and Ofer Meshi. 2018. Seq2slate: Re-ranking and slate
optimization with rnns. arXiv preprint arXiv:1810.02019 (2018).

[5] Ting Chen, Lala Li, and Yizhou Sun. 2020. Di�erentiable product quantization
for end-to-end embedding compression. In International Conference on Machine
Learning. PMLR, 1617–1626.

[6] Tong Chen, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, and Meng Wang.
2021. Learning Elastic Embeddings for Customizing On-Device Recommenders.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 138–147.

[7] Zeyuan Chen, Jiangchao Yao, Feng Wang, Kunyang Jia, Bo Han, Wei Zhang, and

Hongxia Yang. 2021. MC2-SF: Slow-Fast Learning for Mobile-Cloud Collaborative
Recommendation. https://doi.org/10.48550/ARXIV.2109.12314

[8] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
2014. On the Properties of Neural Machine Translation: Encoder–Decoder Ap-
proaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation. 103–111.

[9] Shangfeng Dai, Haobin Lin, Zhichen Zhao, Jianying Lin, Honghuan Wu, Zhe
Wang, Sen Yang, and Ji Liu. 2021. POSO: Personalized Cold Start Modules for
Large-scale Recommender Systems. https://doi.org/10.48550/ARXIV.2108.04690

[10] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019.
Sequential Scenario-Speci�c Meta Learner for Online Recommendation. In Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. 2895–2904.

[11] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters
27, 8 (2006), 861–874.

[12] Mingsheng Fu, Anubha Agrawal, Athirai A. Irissappane, Jie Zhang, Liwei Huang,
and Hong Qu. 2022. Deep Reinforcement Learning Framework for Category-
Based Item Recommendation. IEEE Transactions on Cybernetics 52, 11 (2022),
12028–12041. https://doi.org/10.1109/TCYB.2021.3089941

[13] Xudong Gong, Qinlin Feng, Yuan Zhang, Jiangling Qin, Weijie Ding, Biao Li, Peng
Jiang, and Kun Gai. 2022. Real-Time Short Video Recommendation on Mobile
Devices. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. 3103–3112.

[14] Yu Gong, Ziwen Jiang, Yufei Feng, Binbin Hu, Kaiqi Zhao, Qingwen Liu, and
Wenwu Ou. 2020. EdgeRec: Recommender System on Edge in Mobile Taobao. In
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. 2477–2484.

[15] Wei Guo, Can Zhang, Zhicheng He, Jiarui Qin, Huifeng Guo, Bo Chen, Ruiming
Tang, Xiuqiang He, and Rui Zhang. 2022. MISS: Multi-Interest Self-Supervised
Learning Framework for Click-Through Rate Prediction. In 2022 IEEE 38th In-
ternational Conference on Data Engineering (ICDE). 727–740. https://doi.org/10.
1109/ICDE53745.2022.00059

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9 (1997), 1735–1780.

[17] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical Reparameterization
with Gumbel-Softmax. https://arxiv.org/abs/1611.01144

[18] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-Based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. (2002), 422–446.

[19] James M. Joyce. 2011. Kullback-Leibler Divergence. Springer Berlin Heidelberg,
Berlin, Heidelberg, 720–722. https://doi.org/10.1007/978-3-642-04898-2_327

[20] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strategies
for Improving Communication E�ciency. In NIPS.

[21] Yi Li, Jieming Zhu, Weiwen Liu, Liangcai Su, Guohao Cai, Qi Zhang, Ruiming
Tang, Xi Xiao, and Xiuqiang He. 2022. PEAR: Personalized Re-ranking with Con-
textualized Transformer for Recommendation. arXiv preprint arXiv:2203.12267
(2022).

[22] Guogang Liao, Ze Wang, Xiaoxu Wu, Xiaowen Shi, Chuheng Zhang, Yongkang
Wang, XingxingWang, andDongWang. 2022. Cross DQN: Cross DeepQNetwork
for Ads Allocation in Feed. InWWW. 401–409.

[23] J. Lin. 1991. Divergence measures based on the Shannon entropy. IEEE Transac-
tions on Information Theory 37, 1 (1991), 145–151.

[24] Weiwen Liu, Qing Liu, Ruiming Tang, Junyang Chen, Xiuqiang He, and
Pheng Ann Heng. 2020. Personalized Re-ranking with Item Relationships for E-
commerce. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 925–934.

[25] Weiwen Liu, Yunjia Xi, Jiarui Qin, Fei Sun, Bo Chen, Weinan Zhang, Rui Zhang,
and Ruiming Tang. 2022. Neural Re-ranking in Multi-stage Recommender Sys-
tems: A Review. arXiv preprint arXiv:2202.06602 (2022).

[26] Yan Lu, Yuanchao Shu, Xu Tan, Yunxin Liu, Mengyu Zhou, Qi Chen, and Dan
Pei. 2019. Collaborative Learning between Cloud and End Devices: An Empirical
Study on Location Prediction. In Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing. 139–151.

[27] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. 2016. Cross-Stitch Networks
for Multi-task Learning. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 3994–4003.

[28] Natwar Modani, Deepali Jain, Ujjawal Soni, Gaurav Kumar Gupta, and Palak
Agarwal. 2017. Fairness Aware Recommendations on Behance. In Advances in
Knowledge Discovery and Data Mining, Jinho Kim, Kyuseok Shim, Longbing Cao,
Jae-Gil Lee, Xuemin Lin, and Yang-Sae Moon (Eds.). 144–155.

[29] Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi Cheng, and Jirong Wen.
2020. Setrank: Learning a permutation-invariant ranking model for informa-
tion retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 499–508.

[30] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian
Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking
for recommendation. In Proceedings of the 13th ACM conference on recommender
systems. 3–11.

[31] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2021. Fairness in
Rankings and Recommendations: An Overview. The VLDB Journal 31 (oct 2021),
431–458.

[32] Divyasheel Sharma and Santonu Sarkar. 2022. Enabling Inference and Train-
ing of Deep Learning Models for AI Applications on IoT Edge Devices. Springer
International Publishing, Cham, 267–283.

[33] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via Self-
Attentive Neural Networks. In CIKM. 1161–1170.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS, Vol. 30.

[35] Qinyong Wang, Hongzhi Yin, Tong Chen, Zi Huang, Hao Wang, Yanchang Zhao,
and Nguyen Quoc Viet Hung. 2020. Next Point-of-Interest Recommendation on
Resource-Constrained Mobile Devices. InWWW. 906–916.

[36] Yunjia Xi, Weiwen Liu, Jieming Zhu, Xilong Zhao, Xinyi Dai, Ruiming Tang,
Weinan Zhang, Rui Zhang, and Yong Yu. 2022. Multi-Level Interaction Reranking
with User Behavior History. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval.

[37] Wei Xia, Weiwen Liu, Yifan Liu, and Ruiming Tang. 2022. Balancing Utility and
Exposure Fairness for Integrated Ranking with Reinforcement Learning. In CIKM.
4590–4594.

[38] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Guandong Xu, and Quoc
Viet Hung Nguyen. 2022. On-Device Next-Item Recommendation with Self-
Supervised Knowledge Distillation. In SIGIR. 546–555.

[39] Xin Xia, Junliang Yu, Qinyong Wang, Chaoqun Yang, Nguyen Quoc Viet Hung,
and Hongzhi Yin. 2023. E�cient On-Device Session-Based Recommendation.
ACM Trans. Inf. Syst. (jan 2023).

[40] Ruobing Xie, Shaoliang Zhang, Rui Wang, Feng Xia, and Leyu Lin. 2021. Hierar-
chical Reinforcement Learning for Integrated Recommendation. In Proceedings
of the AAAI Conference on Arti�cial Intelligence. 4521–4528.

[41] Yikai Yan, Chaoyue Niu, Renjie Gu, Fan Wu, Shaojie Tang, Lifeng Hua, Chengfei
Lyu, and Guihai Chen. 2022. On-Device Learning for Model Personalization with
Large-Scale Cloud-Coordinated Domain Adaption. In SIGIR. 2180–2190.

[42] Jiangchao Yao, Feng Wang, Kunyang Jia, Bo Han, Jingren Zhou, and Hongxia
Yang. 2021. Device-Cloud Collaborative Learning for Recommendation. In SIGIR.
3865–3874.

[43] Chunxing Yin, Bilge Acun, Xing Liu, and Carole-Jean Wu. 2021. TT-Rec: Tensor
Train Compression for Deep Learning Recommendation Models. In Proceedings
of the 4th MLSys Conference.

[44] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-
Through Rate Prediction. In CIKM. 1059–1068.

5234

https://www.mindspore.cn/
https://doi.org/10.48550/ARXIV.2109.12314
https://doi.org/10.48550/ARXIV.2108.04690
https://doi.org/10.1109/TCYB.2021.3089941
https://doi.org/10.1109/ICDE53745.2022.00059
https://doi.org/10.1109/ICDE53745.2022.00059
https://arxiv.org/abs/1611.01144
https://doi.org/10.1007/978-3-642-04898-2_327

On-device Integrated Re-ranking with Heterogeneous Behavior Modeling KDD ’23, August 6–10, 2023, Long Beach, CA, USA.

A IMPLEMENTATION DETAILS

A.1 History and Candidates Generation

Since the three datasets do not partition the cloud and device history

behaviors, we follow [7], with the edge device accessing all the

histories and the cloud side missing the three most recently clicked

items. In other words, we sort the history items from all sources in

chronological order to obtain [ℎ1, ℎ2, . . . , ℎĢ], where ℎğ , 8 = 1, . . . , ;

denotes the 8-th most recent item clicked by the user, and ; is

the maximum length of the history. We treat the whole sequence

[ℎ1, ℎ2, . . . , ℎĢ] as device history and [ℎ4, . . . , ℎĢ] as cloud history.

Unlike the Celia Suggestions dataset, the MCC and CTC dataset

do not provide ranking lists or candidate sets from di�erent sources,

so we have to construct the candidate set of each source on these

two datasets. As such, we sample 1 positive (clicked) and 9 negative

(non-clicked) items from all sources, and then categorized all the

items into di�erent candidate sets based on their sources.

A.2 Reproducibility

The implementation of our proposed DIR is publicly available 4. We

use the last 20 items clicked by the user on each source as history

(device history). The maximum length of initial lists of each source

is set to 10. The learning rate is selected from {5×10−4, 6×10−4, 1×
10−3, 2 × 10−3, 3 × 10−3}, and the parameter of L2-Regularization

from {1×10−5, 5×10−5, 1×10−4, 1×10−3, 2×10−3}. The embedding

size of the categorical feature is set to 16. The batch size and hidden

size are set to 128 and 32. The hyper-parameter V that controls the

tradeo� between utility and fairness loss is set to 0.5, and target

distribution w in exposure loss is set the same with c in metric JS.

For a fair comparison, we also �ne-tune all baselines to achieve

their best performances.

B HYPER-PARAMETER STUDY

Since we design two losses for the utility and exposure fairness

tasks, some hyper-parameters, such as the tradeo� parameter V and

the target distribution w of exposure loss, can substantially impact

the �nal results. As such, we conduct several experiments to get a

comprehensive understanding of how the two hyper-parameters

a�ect the performance of DIR.

0.
1

0.
3

0.
5

0.
7

0.
9

(a) MCC

0.76

0.78

0.80

0.82

AU
C

0.0

0.5

1.0

1.5

2.0

JS

1e23

0.
1

0.
3

0.
5

0.
7

0.
9

(b) CTC

0.62

0.64

0.66

0.68

AU
C

0.0

0.5

1.0

1.5

2.0

JS

1e23

0.
1

0.
3

0.
5

0.
7

0.
9

(c) Celia Suggestions

0.908

0.910

0.912

0.914

AU
C

0.0

0.5

1.0

1.5

2.0

2.5

JS

1e24

Figure 4: The impact of the tradeo� parameter V .

First, we �x all the other hyper-parameters and tune the tradeo�

parameter V . Then, we visualize the variation of a utility-based

metric AUC and a fairness-based metric JS on the three datasets in

Figure 4. From the �gure, we can notice that the tendency of JS and

4The MindSpore implementation is available at: https://gitee.com/mindspore/models/
tree/master/research/recommend/DIR

AUC are reversed. When V is smaller, the model performs worse on

AUC, while the value of JS is smaller, which means that the model

obtains better JS. Conversely, when the value of V is larger, the

model yields a better AUC and a worse JS. This suggests that there

is a tradeo� between utility and exposure fairness controlled by

V . Next, we investigate the e�ect of target distribution w on DIR’s

Service App

(a) Target: (0.1, 0.9)

0.0

0.2

0.4

0.6

0.8
HRL
DIR
target

Service App

(b) Target: (0.2, 0.8)

0.0

0.2

0.4

0.6

0.8 HRL
DIR
target

Service App

(c) Target: (0.3, 0.7)

0.0

0.2

0.4

0.6

0.8 HRL
DIR
target

Figure 5: The performance of DIR and HRL under di�erent

target distributions. The AUC of HRL is 0.8773 and AUCs of

DIR are (a) 0.9082, (b) 0.9135, and (c) 0.9040.

performance. We select three di�erent target distributions with the

ratio of Service versus App being 1: 9, 2: 8, and 3: 7, respectively,

of which 2: 8 is the closest one to that in the original Celia Sug-

gestions dataset. As JS is not very intuitive, we visualize the ratio

of exposed Service and App for the results of DIR and HRL, the

strongest baseline on JS, in Figure 5. We can observe that the target

distribution does not a�ect HRL, but can drive the distribution of

DIR close to the target distribution. Certainly, the deviation of the

target distribution from the original one also leads to a decrease

in the utility-based metrics of DIR, such as AUC, but its result is

still better than HRL, indicating that DIR makes a good tradeo�

between utility and exposure fairness.

C CASE STUDY

App

√ √ √ √

√ √ √ √

DIR

MIR-D

Behavior History Re-ranked List

(a) Request Index: 12291

Service

App

√ √

√

DIR

MIR-D

(b) Request Index: 15914

Service

Figure 6: The re-ranked results of DIR andMIR-D. The purple

square denotes App and the yellow one denotes Service.

To study how DIR mixes items from various sources, we pick two

cases from Celia Suggestions dataset and compare the re-ranked

results of DIR with the strongest baselineMIR-D. In Figure 6, the left

part presents users’ historical behaviors in Service and App sources,

while the right part shows the top-5 recommendations generated by

DIR and MIR-D. As Celia Suggestions is an imbalanced dataset with

few Service occurrences, we adopt the dashed boxes for the absence

of historical items. On the right-hand side, we use a check mark to

5235

https://gitee.com/mindspore/models/tree/master/research/recommend/DIR
https://gitee.com/mindspore/models/tree/master/research/recommend/DIR

KDD ’23, August 6–10, 2023, Long Beach, CA, USA. Yunjia Xi et al.

indicate that the item was clicked, thus enabling the measurement

of the re-ranking performance.

Based on Figure 6, we can observe that DIR is capable of achiev-

ing exposure fairness in a personalized way. For instance, when

there are many Service items historically clicked by the user in Re-

quest 12291, DIR will also recommend more Service items; whereas

when faced with Request 15914 where the user has no historical

Service items, DIR will be more cautious in recommending Service

items. This indicates that DIR can capture the user’s personalized

preferences and adjust its recommendations dynamically to meet

the constraint of exposure fairness. Apart from that, in Request

15914 without the historical behavior in the Service source, DIR

successfully recommends the clicked Service item, indicating that

DIR is also able to infer interests in Service source from the user’s

behavior in App source and overcome the problem of cold history.

5236

